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Метод активной мишени*

• В методе активной мишени 
время-проекционная 
ионизационная камера (ИК) 
является одновременно 
газовой мишенью и 
детектором частиц отдачи.

* ИК = Активная мишень = TPC 
(Time Projection Chamber)  

• Метод позволяет измерять:
• Энергию частицы отдачи (TR),

• Квадрат импульса (q2), 
переданного ей

• Угол вылета частицы отдачи (θR)
• Измеряется по разнице времен 

прихода сигнала на 
сегментированную анодную 
плоскость 

Изображение: Е.М. Маев 

(НИЦ КИ - ПИЯФ). 

Катод

Анод

Сетка

e–

Налетающая 
частица

Рассеянная частица

Рабочий газ ионизационной камеры

Сигнал ИК ~ TR = q2 / 2MR

Частица отдачи (TR)

Детектор Детектор

Преимущества метода:
1. Отсутствие стеночных эффектов
2. Прямое определение q2

3. Возможность работы в режиме 
совпадений

4. 3D-картина ионизации

θR
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Совместные проекты в Германии и ЦЕРН

• В 2010-22 гг. ОФВЭ НИЦ «КИ» - ПИЯФ предложил ряд совместных 
экспериментов на базе европейских ускорителей:
• MAMI (г. Майнц, Германия) – измерение зарядового радиуса протона в упругом e–

p-рассеяние (см. доклад П.В. Кравченко)→ ACTAM

• SPS M2-beamline, AMBER / NA66 (CERN) – измерение зарядового радиуса протона в 
упругом µp-рассеяние

• MESA (г. Майнц, Германия) – измерение поляризуемости нуклона→ COMPTON

• R3B (FAIR, г. Дармштадт, Германия) – изучение свойств экзотических ядер → ACTAF2

• В 2022-24 гг. сотрудничество было остановлено по инициативе 
европейских коллег по политическим причинам

• В настоящее время ОФВЭ НИЦ «КИ» - ПИЯФ ищет возможности 
реализации этой научной программы на базе российских ускорителей 
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ACTAM



Измерение сечения выбивания нуклонов и 
кластеров из ядер
• Измерение дифференциальных 

сечений выбивания протонов и 
кластеров (дейтронов и ядер 
гелия) на различных газовых 
мишенях (He, CH4, N2, Ar) при 
различных энергиях 
электронного пучка.

• Во время тестовых измерений, 
проведенных с использованием 
прототипа ИК в 2018 г. на 
ускорителе электронов MAMI (г. 
Майнц, Германия), наблюдалось 
выбивание протонов и 
дейтронов из ядер гелия и азота 
при энергии налетающего 
электрона 720 МэВ. 

Изображение: Е.М. Маев 

(НИЦ КИ - ПИЯФ). 
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Ионизационная 
камера ACTAM
• Корпус камеры: алюминиевый 

сплав АМг5

• Толщина стенок камеры: 8 мм

• Длина корпуса: ~ 400 мм

• Внутренний диаметр 184 мм 

• Полный объем камеры: 10 л

• Рабочее давление: <25 атм 

• В дальнейшем эта камера (с 
изменённой структурой электродов) 
может быть использована для 
измерения сечения комптоновского 
рассеяния на ядрах гелий-3, где 
экспериментальные данные 
отсутствуют.

Чертёж и основные размеры ИК ACTAM

Сосуд высокого давления ИК ACTAM
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Маев Е.М., Маев О.Е.



Ионизационная 
камера ACTAM
• Корпус камеры: алюминиевый 

сплав АМг5

• Толщина стенок камеры: 8 мм

• Длина корпуса: ~ 400 мм

• Внутренний диаметр 184 мм 

• Полный объем камеры: 10 л

• Рабочее давление: <25 атм 

• В дальнейшем эта камера (с 
изменённой структурой электродов) 
может быть использована для 
измерения сечения комптоновского 
рассеяния на ядрах гелий-3, где 
экспериментальные данные 
отсутствуют.

Новый сосуд высокого давления ИК ACTAM

7
Маев Е.М., Маев О.Е.

• В 2025 году изготовлен новый 
колпак сосуда высокого давления

• Отсутствие «трубы» дает доступ к 
измерению малых углов рассеяния



A(b,rb’)X → d3σ/(dΩb’dTrdΩr)  Tb, поляризация?
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b = p, e–, d, π, K

1 2 3 4 5 6 7 8

b'

r = p, d, He

• Портативный прибор позволит работать на практически всех доступных пучках!

• 8 возможных параметров для варьирования открывают гигантские комбинаторные 

возможности → фабрика сечений

Сцинтиллятор
(для определение точки 
рассеяния в ТРС)

Минимальная конфигурация установки



A(b,rb’)X → d3σ/(dΩb’dTrdΩr)  Tb, поляризация?
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b = p, e–, d, π, K

1 2 3 4 5 6 7 8

b'

r = p, d, He

• Портативный прибор позволит работать на практически всех доступных пучках!

• 8 возможных параметров для варьирования открывают гигантские комбинаторные 

возможности → фабрика сечений

Более сложный триггер – более интенсивные пучки

Сцинтиллятор 
пучкаСцинтиллятор с 

отверстием

Вето на гало пучка

Сцинтиллятор с 
отверстием

Частица рассеяния

Beam-killer



A(b,rb’)X → d3σ/(dΩb’dTrdΩr)  Tb, поляризация?
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b = p, e–, d, π, K

1 2 3 4 5 6 7 8

b'

r = p, d, He

• Портативный прибор позволит работать на практически всех доступных пучках!

• 8 возможных параметров для варьирования открывают гигантские комбинаторные 

возможности → фабрика сечений

Триггер с определением угла??

Сцинтиллятор 
пучкаСцинтиллятор с 

отверстием

Вето на гало пучка

Beam-killer

Демиденко Н. 
(СПбГТУб 4 курс)



A(b,rb’)X → d3σ/(dΩb’dTrdΩr)  Tb, поляризация?
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b = p, e–, d, π, K

1 2 3 4 5 6 7 8

b'

r = p, d, He

• Портативный прибор позволит работать на практически всех доступных пучках!

• 8 возможных параметров для варьирования открывают гигантские комбинаторные 

возможности → фабрика сечений

Треккер пучка и MWPC для частиц рассеяния

Сцинтиллятор 
пучка

Треккер пучка на 
основе MWPC
(Бочин Б., Маев Е.)



A(b,rb’)X → d3σ/(dΩb’dTrdΩr)  Tb, поляризация?
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b = p, e–, d, π, K

1 2 3 4 5 6 7 8

b'

r = p, d, He

• Портативный прибор позволит работать на практически всех доступных пучках!

• 8 возможных параметров для варьирования открывают гигантские комбинаторные 

возможности → фабрика сечений

Треккер пучка и MWPC для частиц рассеяния

Сцинтиллятор 
пучка

Треккер пучка на 
основе MWPC
(Бочин Б., Маев Е.)

Камеры LHCb



Новый сосуд высокого давления
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HV-ввод

Разъемы 
для 
съема 
сигналов

Нет трубы!

Система для 
монтажа



Ионизационная камера ACTAM

• Портативная ионизационная 
камера

• От 22 каналa считывания
• Азимутальная сегментация

• Внутренние элементы камеры –
изготовлены в ОФВЭ координатор 
О.Е. Маев
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Оправка для пайки 
выравнивающих колец

Анодная плоскость

Сеточный электрод

Кольцо для корректировки эл. поля

А. Граник, Л.Г. Кудин и многие другие



Сборка 
внутренней 
структуры 
ACTAM

15
А. Граник, О.Маев, О. Борисова, В. Ганжа и многие другие

Делитель 
напряжения 
и кольца 
коррекции 
поля

Катод

Анод и 
Сетка

α-сетка

α-катод
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• 2024 г стенд для тестирования работы подсистемы сбора данных с камеры TPC, включая плату ASF12ep 
(Грузинский Н.) с разными предусилителями (Неустроев П.В. и Яцура В.И.) и концентратор сбора данных 
CCB12 (Яцура В.И.).

• Разработано программное обеспечение для считывания, online - мониторинга и визуализации 
полученных данных на базе системы MIDAS (Фотьев В.).

• 2025 г. Проведено тестирование данной электроники на существующей камере TPC, предоставленной 
лабораторией барионной физики (Маев Е.М., Маев О.Е. и Дзюба А.А.)

• 2025 г. Успешные испытания (Грузинский Н. и др.) с пред.уситителями (Петров Г.Е.)



Запуск ИК ACTAM
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Изготовлены 2 Flash ADC (22 канала)

Успешные испытания (Грузинский Н.)

ACTAM

Усилители-

формирователи 

(Петров Г.Е.)



Event-display ACTAM
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α

Начата разработка программного обеспечения для анализа данных

Аргон, давление 0,53 атм.



Обработка первых данных ACTAM
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➢Треки с числом сработавших 

сегментов ИК от 4 до 6

➢Пик соответствует энергии 

альфа-частицы 241Am

➢Энергия: 5,486 МэВ

➢Малые потери электронов 

при дрейфе!

➢ИК работает!

Аргон, давление 0,53 атм.



ИК ACTAM

• Камера изготовлена и успешно прошла 
испытания на давление, на вакуум

• ИК полностью оснащена электроникой

• Сигналы от альфа-источников

• Испытания на пучках СЦ-1000 в 2026 г
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p

р'

r = p, d, He
Сцинтиллятор
(для определение точки 
рассеяния в ТРС)

Минимальная конфигурация установки

Мастер 
концентратор

Концентратор 1 Концентратор 2

Flash 
ADC1

Flash 
ADC2

Триггер с 
сцинтиллятора



ACTAF2



ИК ACTAF2
• Активная мишень ACTAF2 была создана для изучения процессов 

неупругого рассеяния экзотических ядер на ядрах гелия на 
строящемся ускорительном комплексе FAIR  (Дармштадт, 
Германия). 

• Планировалось ее размещение внутри большого детектора гамма квантов 
CALIFA

• Рабочее давление 10 bar

• C помощью α-источника (Аm-241), помещенного на катоде ИК, 
были измерены энергетические спектры при разных 
экспериментальных условиях. 

ACTAF2 в вакуумной лаборатории ОФВЭ

Бериллиевое окно на 
фланце камеры

Анодная 
плоскость

• Необходимо 
оснастить 
электроникой для 
съема данных 
(FlashADC)

2026 г. !
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Эксперимент на СЦ1000
• Определение отношения реальной к мнимой 

части амплитуд упругого р-He, p-d и p-n 
рассеяния вперёд при энергиях протонов 500-
1000 МэВ, где известные результаты можно 
улучшить, дополнить или выполнить измерения 
там, где они не проводились вообще. 

• Одновременно, можно получить результаты по 
неупругому рассеянию протонов на тех же 
ядрах сопровождающихся вылетом кластеров

• Разработка трекера пучка (ОДИ)

• Тестовый сеанс на СЦ1000 без трековой 
системы, например, установка ИК на выходе 
спектрометра МАП и возможное 
использование трековой системы МАР в 
качестве входного трекера (Миклухо О.В.)
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[ см. Программу модернизации СЦ1000 ]



COMPTON

• Необходимо оснастить электроникой
для съема данных (FlashADC)

2026 г. !



Поляризуемость 
протона

• Поляризуемость – одно из 
фундаментальных свойств 
нуклона, которое 
характеризует степень его 
деформации под 
действием внешнего 
электромагнитного поля. 

• Поляризуемость 
(электрическую (α) и 
магнитную (β)) можно 
определить при 
измерении зависимостей 
дифференциальных 
сечений комптоновского 
рассеяния от энергии и 
угла рассеяния фотонов 𝜃𝛾

Схема планируемого 
эксперимента по 
измерению 
поляризуемости нуклонов

Центральные 
значения отличаются 

в 3 раза

25

Большая систематика 
(модельнозависимая)



Идея измерения

Low Energy Theorem (LET) позволяет точно рассчитать 
сечения рассеяния для энергий меньше 100 МэВ

Безмодельный расчёт сечения!
• При угле рассеяния 90 градусов сечение не 

зависит от магнитной поляризуемости.
• Достаточно провести измерения при двух углах 

(90 и 135 град.)
• Использование активной мишени на совпадение 

со спектрометром фотонов позволяет получить 
дополнительные ограничения на кинематику 
рассеяния

• Можно использовать непрерывный спектр 
фотонов

• Нормировка на энергии фотонов в районе 25 МэВ, 
где зависимость от поляризуемости очень слабая  
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Предлагаемая схема измерения

1. Преобразователь тормозного 
излучения и дипольный магнит;
2. Коллимационная система;
3. Сброс для электронного пучка;
4. Бетонная (+свинец, полиэтилен) 
защита;
5. Ионизационные камеры высокого 
давления;
6. ү-спектрометр;

27
Тестовый эксперимент в TU Дармштадт
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Статья по теме диссертации А.Ю. Арутюновой принята к печати



Разработка программ моделирования
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Пример моделированного события

Центральный анод

R = 1 см

Первое анодное кольцо

толщина 2 см

Второе анодное кольцо

толщина 2 см

• Тип частицы: протон

• TR = 7 МэВ

• Угол вылета частицы 

отдачи к оси пучка: 70 град.

Построена компьютерная 
Монте-Карло модель ИК 
ACTAM, учитывающая 
физические процессы 
формирования сигнала 
частицей отдачи, а также 
сопутствующие шумы 
(электронический и шум, 
наведенный пучком 
электронов). 

Измерения с ИК ACTAM 
могут быть прекрасным 
тестовым экспериментом

Равномерный 
пучок 106 e
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Дзюба А.А., Арутюнова А.Ю., Аламури А. (СПбГУ)
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Расчет полей и транспортных свойств газов

32

Добровольский А.В., Чубыкин А.Д.

Расчет электрических полей (COLMSOL) Расчет транспортных свойств газов: скорость 
дрейфа, диффузия, прилипание (Garfield+Magbolz)

Интеграция расчетов характеристик дрейфа электронов в параметрическом виде в ПО для моделирования

Мертвая зона 
наблюдается 
в измерениях



Заключение
• Метод активной мишени – надежный способ изучать реакции с 

малым переданным импульсом

• ОФВЭ НИЦ «Курчатовский институт» – ПИЯФ имеет большой опыт 
в этой области, научный задел, наработки, а также программу 
исследований:
• Измерение сечения выбивания нуклонов и кластеров из ядер (ИК ACTAM)
• Измерение отношения реальной и мнимой частей амплитуды рассеяния 

во взаимодействиях протон-гелий на СЦ-1000 (ИК ACTAF2)
• Измерение электрической и магнитной поляризуемостей протона 

(КОМПТОН)
• Исследование комптоновского рассеяния на гелии-3 → поляризуемость 

нейтрона (ГАММА-ГЕЛИЙ)
• Измерение зарядового радиуса протона (ПРОТОН)
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С наступающим Новым Годом!



Запасные слайды
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LET Theorem
LET позволяет точно рассчитать сечения рассеяния 
для энергий меньше 100 МэВ): 

Параметры 𝑎0,1,2 задаются с помощью 
зависимости от аномального 

магнитного момента 
35

Арутюнова А.Ю., семинар ОФВЭ 24.09.2024



𝛼,∙ 10−4𝑓𝑚3 𝛽,∙ 10−4𝑓𝑚3 Ref

1 9.0 ± 2.0 2.0 ± 2.0
V.I. Goldansky, Elastic γ-p scattering at 40 to 70 MeV and polarizability of the 
proton. Nuclear Physics, 18:473–491, 1960.

2 10.7 ± 1.1 −0.7 ± 1.6
P. Baranov, New experimental data on the proton electromagnetic 
polarizabilities. Physics Letters B, 52(1):122–124, 1974.

3 10.9 ± 2.2 ± 1.3 3.3 ± 2.2 ± 1.3
F. J. Federspiel, Proton compton effect: A measurement of the electric and 
magnetic polarizabilities of the proton. Phys. Rev. Lett., 67:1511–1514, Sep 
1991.

4 10.6 ± 1.22 ± 1.05 3.6 ± 1.22 ± 1.05
A. Zieger, 180° compton scattering by the proton below the pion threshold. 

Physics Letters B, 278(1):34–38, 1992

5 9.8 ± 0.4 ± 1.1 4.4 ± 0.4 ± 1.1
E. L. Hallin, Compton scattering from the proton. Phys. Rev. C, 48:1497–
1507, Oct 1993.

6 12.5 ± 0.6 ± 0.7 ± 0.5 1.7 ± 0.6 ± 0.7 ± 0.5
B. E. MacGibbon, Measurement of the electric and magnetic polarizabilities 
of the proton. Phys. Rev. C, 52:2097–2109, Oct 1995.

7 11.9 ± 0.5 ± 1.3 ± 0.3 1.2 ± 0.7 ± 0.3 ± 0.4
V. Leon, Low-energy compton scattering and the polarizabilities of the 
proton. The European Physical Journal A, 10:207–215, 04 2001.

8 10.99 ± 0.16 ± 0.47 ± 0.17 ± 0.34 3.14 ± 0.21 ± 0.24 ± 0.20 ± 0.35
P.P. Martel, Measurement of compton scattering at mami for the extraction 
of the electric and magnetic polarizabilities of the proton. Phys. Rev. Lett., 
128:132503, Apr 2022

9 11.2 ± 0.4 2.5 ± 0.4
R. L. Workman and Others. Review of Particle Physics. PTEP, 2022:083C01, 
2022.
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Арутюнова А.Ю., семинар ОФВЭ 24.09.2024

Данные по поляризуемости протона



Рис. N Сравнение спектра, измеренного в детекторе с 
кристаллом 10’’x10’’ при 0o (черная линия), с моделируемым 
нормированным спектром (серая линия) при E0 = 71.3 МэВ. 

Время измерения составило 40 минут при токе электронного 
пучка 200 пА. 37



• Расстояние  катод-сетка (мм) -  26

•  Расстояние  катод-сетка (мм) -   1 

•  Зазор между сеточными проволоками (мм) -  0.5

•  Диаметр проволоки (мм) -      0.055 

•  Ширина основных анодных стрипов(мм)

•  для первой и второй ИК, соответственно   – 3 и 4

•  Зазор между стрипами (мм)  -   0.3 

•  Направление основных стрипов в первой ИК (град) -   44 

•  Число основных стрипов в первой ИК -   15

•  Длина основных стрипов в первой ИК (мм) -  90 

• Направление основных стрипов во второй ИК (град) -   22

•  Число основных стрипов во второй ИК -    12

•  Длина основных стрипов во второй ИК (мм) -  120 

•  Число дополнительных стрипов в каждой ИК -  3

•  Ширина дополнительных стрипов в каждой ИК- 6

•  Число анти стрипов в каждой ИК -  3

•  Ширина анти стрипов в каждой ИК- 2
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Предлагаемая схема измерения (спектр ү) 

39

Тестовый эксперимент в TU Дармштадт

1. Преобразователь тормозного 
излучения и дипольный магнит;
2. Коллимационная система;
3. Сброс для электронного пучка;
4. Бетонная (+свинец, полиэтилен) 
защита;

6. ү-спектрометр;



Ионизационная камера 
для проекта КОМПТОН

• Созданная в НИЦ «Курчатовский Институт» – ПИЯФ 
ИК, первоначально предполагалась использоваться 
на ускорителе MESA (Mайнц, Германия).

•  Данная камера обеспечивает необходимые 
требования по регистрации угла и энергии протонов 
отдачи, при наполнении объёма камеры до 
давления ~75 атм, в процессе комптоновском 
рассеяния фотонов с энергией 15-140 МэВ под 
углами 90±5 и 130±5 градусов. 

• Для этого в ней установлены две последовательные 
анодные плоскости

• Корпус камеры изготовлен из нержавеющей стали с 
толщиной стенок 50 мм. 

• Фотонный пучок входит (выходит) из камеры через 
бериллиевые окна диаметром 50 мм и толщиной 8 
мм. 

Чертежи ионизационной камеры в двух проекциях

γ

γ'

γ'

p p
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Ионизационная камера 
для проекта КОМПТОН
• Рассеянные на водороде комптоновские 

фотоны под выбранными углами ϑγ = 90° 
± 5° и ϑγ = 130° ± 5° вылетают из 
ионизационной камеры через 15 мм 
бериллиевые окна в направлении гамма-
спектрометров. 

• Объем камеры составляет ~ 10 литров. 

• ИК работает в режиме сбора электронов, 
т.е. сигналы образуются от электронов, 
собранных после ионизации, 
произведенной протонами.

• Высокое напряжение приложенное к 
катоду составляет -70 кВ, к сетке –3.5 кВ, 
при нулевом потенциале анода. 

• Время дрейфа электронов составляет 
~5мкс и ~0.12 мкс для промежутка катод-
сетка и сетка-анод, соответственно. 
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Сцинтилляционные спектрометры

• Предполагалось, что 
спектрометры (NaI) будут 
изготовлены в Германии

• В распоряжении ОФВЭ 
имеются детекторы, которые 
могут быть использованы 
для этих измерений

• Разработка спектрометра 
планируется в первой 
половине 2025 г.
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Результаты тестового измерения в Германии

Geant4

Пучок фотонов, полученный из пучка 
электронов с энергией 70 МэВ

Корреляционный (тестовый эксперимент), 
выполненный на фотонном пучке, полученном 

из пучка электронов с энергией 60 МэВ

(Kinematics only)

Необходимо увеличить статистику! 43



Требования к пучку и ожидаемая погрешность
• Выведенный электронный пучок 

с энергией 140 МэВ

• Ток пучка 50 мкА

• Ожидаемая скорость набора 5 Гц

• Продолжительность сеанса 500 
часов 

∆𝛼 = [0.16𝑠𝑡𝑎𝑡 ± 0.60𝑠𝑦𝑠𝑡+𝑚𝑜𝑑] ∙ 10
−4 фм3

∆𝛽 = [0.21𝑠𝑡𝑎𝑡 ± 0.47𝑠𝑦𝑠𝑡+𝑚𝑜𝑑] ∙ 10
−4 фм3

Mainz, 2022:

Активная мишень: ∆𝛼 = [0.07𝑠𝑡𝑎𝑡 ± 0.11𝑠𝑦𝑠𝑡] ∙ 10
−4 фм3

∆𝛽 = [0.11𝑠𝑡𝑎𝑡 ± 0.15𝑠𝑦𝑠𝑡] ∙ 10
−4 фм3

Теоретические и 
смоделированные сечения 
рассеяния при 𝜃𝛾 = 130∘ от 

энергии 𝐸𝛾

44

Маев Е.М., Арутюнова А.Ю.



Организация пучка фотонов

1 – bremsstrahlung converter target (0.3mm gold), 2 – cleaning magnet, 

3 – γ- beam collimator, 4 – electron beam dump (Faraday cup), 5 – concrete shielding

Основные требования к пучку 
электронов:

1. Выведенный электронный пучок 
с энергией ~ 140 MeV и 
интенсивностью ~ 50mkA.

2. Временная структура пучка – 
равномерный (или почти 
равномерный) во времени 
пучок. электронов. Фактор 
заполнения больше 50%.

Качественная бетонная и 
свинцовая защита для 
остановки электронного 
пучка.

Важно до минимума 
снизить фон от нейтронов.

Организация пучка во время тестового 
измерения в Германии

45



Ускоритель ЛИНАК (Дубна)

46

• Линейный ускоритель электронов
• FLAP Collaboration

• Fundamental & applied Linear Accelerator Physics 
collaboration

• Physics of Particles and Nuclei Letters, 2021, Vol. 18, No. 
3, pp. 338–353

• 2024-12-10 – Доклад Алексей Дзюба "Метод активной 
мишени. Перспективы использования и физические 
задачи для электронных пучков"

• 2024-12-13 – официальное начало пуско-наладочных 
работ

• 200-300 МэВ уже сейчас
• 500+ МэВ в будущем
• Выведанные пучки 60, 100 и 200 МэВ



Предложение ОФВЭ→ FLAP

• Провести измерения электрической и магнитной поляризуемостей 
протона методом активной мишени
• Статистика 107 набранных событий, что в 10 раз больше, чем в других экспериментах
• Систематические ошибки будут также существенно уменьшены, так как измерения 

сечений будут выполнены в диапазоне энергий  гамма квантов 20-120 МэВ,  где 
теория практически не имеет модельных ошибок.

• Впервые будут выполнены измерения в области малых энергий фотонов (20-40 МэВ), 
что позволит произвести нормировку на теорию и практически убрать систематику, 
связанную с определением абсолютного потока гамма-квантов, числом ядер в 
мишени и угловым захватом гамма-детекторов

• В случае успеха, исследования могут быть продолжены на других газах
• Эксперименты на дейтерии и гелии-3, позволят измерить электрическую и 

магнитную поляризуемости нейтронов
• Точность может быть улучшена в 2-3 раза!
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